
Version 2.2 Aug 2010

1

3. OVERFLOW-Mode Operation

3.1 Required Input Files
 OVERFLOW 2.2 can be run for single grid or multiple grid steady and unsteady flow applications without

using the OVERFLOW-D options in the code. This is referred to as OVERFLOW-mode, as opposed to OVERFLOW-

D-mode. For single grid applications that do not require loads calculations, only two input files are required to run the

code: the grid file (grid.in) and a NAMELIST input file (over.namelist). The format of the grid file is given in

Appendix A. The grid must be a FORTRAN unformatted PLOT3D file. Single- or multiple-grid PLOT3D format may

be used for single grids. The grid must match the precision (single- or double-precision) and the ENDIAN-ness (big-

or little-ENDIAN) that was selected when the flow solver was compiled. Utility codes are provided to convert the files

if they are not in the proper format for the flow solver. Grids should be checked to assure that they are right handed

and have no negative volumes. These checks can be performed by running OVERFLOW for 0-steps (which also

checks the input files for errors), or by using the overgrid graphical interface in Chimera Grid Tools. The full

NAMELIST input is given in Appendix B.

For 2D grids, three parallel planes must be supplied. The grid planes must lie in the (x,z) plane, offset by a

constant distance in y. Any constant spacing between the planes may be used, but y values of 1, 0, and -1 are

conventional. For computational efficiency, 2D problems should be oriented to use 3 JK-planes, rather than JL- or KL-

planes.

For axisymmetric problems, again a three-plane grid must be supplied. The center plane must lie on the (x,z)

plane (i.e., at y=0). The axis of symmetry is the x-axis, and the first and third planes must lie at -/+1
o
 (and not +/-1

o
)

rotations from this plane. Again, the (j,k,l) system must be right-handed and the grid should be oriented to use 3 JK-

planes, rather than JL- or KL-planes for computational efficiency.

 OVERFLOW 2.2 assumes that all grid blocks communicate using overset interpolation. The interpolation can

be set up using the grid assembly code contained in OVERFLOW 2.2 when the code is run in OVERFLOW-D-mode.

An additional input file is required when not running in OVERFLOW-D-mode. The file may be generated using one of

the grid assembly codes PEGASUS 5
1
 or SUGGAR

2
. This grid assembly file is named XINTOUT. The XINTOUT

file format is specified in Appendix A. This file must also match the precision (single- or double-precision) and the

endian-ness (big- or little-endian) that was selected when the flow solver was compiled.

3.2 Force/Moment Integration
 A positive value of the &GLOBAL NAMELIST input NFOMO will calculate and report force and moment

coefficients every NFOMO iterations. These force and moment calculations use the overset grid FOMOCO
3
 or

USURP
4
 utilities. The user is required to set up an input file and to run mixsur or usurp before the OVERFLOW 2.2

flow solution proceeds. Based on the input surfaces specified, mixsur or usurp determines a unique integration

surface with no overlap. OVERFLOW 2.2 requires some of the files created by mixsur (mixsur.fmp, grid.ibi, and

grid.ptv) or usurp (mixsur.fmp, grid.ibi, and panel_weights.dat) in order to perform the force/moment calculation.

It is the user's responsibility to check the mixsur or usurp output to confirm that suitable integration surfaces were

created. Force and moment coefficients are written to fomoco.out. The format of the fomoco.out file is shown in

Appendix A.

For typical CFD calculations, the body axes are chosen such that the x-axis points nose-to-tail, z points up, and

y is out the right wing. The angle-of-attack (α) and sideslip (β) angles are then defined as

 −=

=

∞

∞−

∞

∞−

V

v

u

w

1

1

sin

tan

β

α

 (3.1)

where V∞ is the magnitude of the free-stream wind, which becomes (u,v,w)∞ when resolved in body axes. Thus

() ()
()
() ()αβ

β
αβ

sincos

sin

coscos

∞∞

∞∞

∞∞

=
−=

=

Vw

Vv

Vu

 (3.2)

Version 2.2 Aug 2010

2

The CL, CD, and CS force coefficients in file fomoco.out are relative to the wind axes, rather than body axes.

Thus body forces Fx, Fy, Fz are resolved into lift, drag and side force as

() ()
() () () ()
() () () ()

sin cos

cos sin cos sin

cos sin sin cos

x z

x z y

x z y

L F F

D F F F

S F F F

α α

α α β β

α α β β

= − +

= + −

= + +

 (3.3)

Roll, pitch, and yawing moments are listed as positive or right-hand rotation in the inertial coordinate system. No

effort is made to change signs to correspond to stability axes (i.e., x pointing forward, z down). Moment coefficients

are computed about the moment reference center specified in the mixsur.fmp input file. This location should be

consistent with the position of the grids that make up the body in the grid.in input file. For moving-body simulations

(OVERFLOW-D-mode) the moment reference center will move with the body. Reference areas and lengths for the

force and moment coefficients are also taken from the mixsur.fmp file. The reference Mach number (REFMACH)

and Reynolds number (REY) are taken from the &FLOINP NAMELIST input. The reference Mach number

(REFMACH) is set to the free-stream Mach number (FSMACH) if the reference Mach number is not specified.

3.3 NAMELIST Inputs
This section outlines the format for the NAMELIST input file used for OVERFLOW. The default name for

the NAMELIST file is over.namelist. Default values for each of the inputs are given in brackets at the end of the

description. If the value for any NAMELIST variable is left out of the input file, it is automatically set to the default

value. A number of the NAMELISTs are repeated for each grid. If an input variable is set for one grid, generally it

becomes the default for all following grids, until the variable is set again. This is true for all variables (such as

numerical scheme, smoothing parameters, etc.) that are not dependent on specific grid topology. Notable exceptions

are boundary conditions, turbulent regions, or enabling viscous terms in specific coordinate directions. The user must

define the beginning and end of each NAMELIST (e.g. &NAMELIST ... /) even if only the default values are

required. Fig. 3.1 shows the names of the NAMELISTS for OVERFLOW 2.2. A full description of the NAMELIST

input variables is given in Appendix B.

Terminology: in this manual, the Fortran standard NAMELIST terminology of “&NAMELIST ... /” is used,

even though many systems still accept the traditional form of “$NAMELIST ... $END”. In fact, many of the

OVERFLOW test cases still use this form, and occasional lapses may be found in this document.

Figure 3.1 NAMELIST inputs for OVERFLOW 2.2.

&GLOBAL /
&FLOINP /
&VARGAM /

&OMIGLIB /
&DCFGLIB /
&GBRICK /
&BRKINP /
&GROUPS /
&XRINFO /
&GRDNAM /
&NITERS /
&METPRM
&TIMACU /
&SMOACU /
&VISINP /
&BCINP /
&SCEINP /
&SIXINP /

Color codes:

Required once per run.

Required once per run for OVERFLOW-D mode. May
be omitted if not using Cartesian off-body grids and/or
DCF.

Required for every grid.

Required for every grid for moving body runs using
6DOF when &OMIGLIB NAMELIST input I6DOF=1.
May be omitted for static grid cases, Geometry
Manipulation Protocol (GMP), or prescribed motion
problems.

Version 2.2 Aug 2010

3

 Most OVERFLOW applications can be run using default values of the input variables. As an example, the

input required to run a 2D inviscid airfoil on an “O” topology grid using the code defaults would be:

Example Input 3.1
&GLOBAL NSTEPS = 500,
/
&FLOINP ALPHA = 2.0, FSMACH = 0.8,
/
&GRDNAM NAME = ‘WING’, /
&NITERS /
&METPRM /
&TIMACU /
&SMOACU /
&VISINP /
&BCINP
 IBTYP = 1, 47, 10, 21,
 IBDIR = 2, -2, 1, 3,
 JBCS = 1, 1, 1, 1,
 JBCE = -1, -1, 1, -1,
 KBCS = 1, -1, 1, 1,
 KBCE = 1, -1, -1, -1,
 LBCS = 1, 1, 1, 1,
 LBCE = -1, -1, -1, 1,
/
&SCEINP /

 Several examples of NAMELIST input files can be found in the test cases that are included in the

OVERFLOW 2.2 distribution. There are some combinations of input that are frequently used. The following are some

examples of the more common input combinations.

Notes on Newton or Dual-Time Sub-Iterations
 Newton or dual-time sub-iterations are used to improve the accuracy of unsteady simulations, and can also

improve the robustness of steady or unsteady simulations. The sub-iterations improve the solution accuracy near

interpolated and extrapolated boundaries and also reduce the global solution error at a given time step. The solution is

advanced one physical time step (DTPHYS) at the end of each sub-iteration cycle when Newton or dual-time sub-

iterations are used. In the following example 5 dual-time sub-iterations are used with second-order time advancement.

Note that the computational time step (DT) does not have to equal the physical time step (DTPHYS). Also, the

computational time step (DT) is non-dimensionalized by the free-stream speed of sound, while the physical time step

(DTPHYS) is non-dimensionalized by the reference velocity.

Example Input 3.2
&GLOBAL
 NSTEPS = 500,
 DTPHYS = 1.0, NITNWT = 5,
/
...
&TIMACU
 ITIME = 1, DT = 0.1, CFLMIN = 10,
/

Newton sub-iterations are similarly specified using the following input. Note that the time step DT is not set (or is set

to 0), which causes it to be set to match the physical time step (DTPHYS).

Example Input 3.3
&GLOBAL
 NSTEPS = 500,
 DTPHYS = 1.0, NITNWT = 5,
/
...
&TIMACU
 ITIME = 0, DT = 0.0, /

Version 2.2 Aug 2010

4

Notes on Grid Sequencing
 Grid sequencing can be used to improve convergence by initially running the solution on coarser grids. This

allows the solution to set up quickly. Note that no restart files are written during the grid sequencing portion of the

calculation, but forces on a body will be calculated during the grid sequencing process. The NAMELIST input for grid

sequencing for 150 iterations on a coarse-grid level, 150 iterations on a medium-grid level, and 500 iterations on the

fine-grid level would be

Example Input 3.4
&GLOBAL
 NSTEPS = 500,
 FMG = .TRUE., FMGCYC = 150,150, NGLVL = 3,
/

If the NAMELIST input FMG is set to TRUE the code will perform grid sequencing – even on a restart of the code.

Hence FMG should be set to false if grid sequencing is not desired.

Notes on Multigrid
 Multigrid is another convergence acceleration technique. In a multigrid algorithm the solution update vector

(∆q) is updated with contributions from coarser grid levels at each time step. This allows low frequency error waves to

be convected rapidly out of the computational domain. Multigrid is generally used for steady state problems. The

input for a 3-level multigrid solution would be

Example Input 3.5
&GLOBAL
 NSTEPS = 500,
 MULTIG = .TRUE., NGLVL = 3,
/

 When combined with grid sequencing, the multigrid algorithm uses at most NGLVL grid levels. Thus

multigrid is not used on the coarsest-grid level, and is used on reduced levels on medium-grid levels. For example, the

following input will run 150 iterations on the coarse level, 150 iterations (with 2-level multigrid) on the medium level,

and 500 iterations (with 3-level multigrid) on the fine-grid level.

Example Input 3.6
&GLOBAL
 NSTEPS = 500,
 MULTIG = .TRUE., FMG = .TRUE., FMGCYC = 150,150, N GLVL = 3,
/

Notes on Implicit Solvers
 The implicit solvers ILHS=5 and 6 use Steger-Warming flux-split (upwind) Jacobians, and can be used with

any of the right hand side options in the code. However, if low-Mach number preconditioning is selected, they will

revert to the central difference flux Jacobians. The default values for the central difference implicit solvers ILHS=0

and 2 are set assuming they are to be used with the central difference right-hand side (IRHS=0). These implicit solvers

can be used in conjunction with upwind right-hand side algorithms (IRHS=2-5) if the NAMELIST parameters are

changed from the default values. The recommended smoothing values for using central difference implicit schemes

with upwind right hand sides are

Example Input 3.7

&METPRM
 IRHS = 5, ILHS = 2, IDISS = 2,
/
...
&SMOACU
 DIS2 = 10.0, DIS4 = 0.1, SMOO = 0.0,
/

Version 2.2 Aug 2010

5

Notes on Low-Mach Number Preconditioning
Details of the low-Mach number preconditioning scheme used in OVERFLOW 2.2 are given in Chapter 1 and

in Ref. 5. Not all of the solution algorithms in the code can currently be used with low-Mach number preconditioning.

The central difference (IRHS=0), Roe upwind (IRHS=4), HLLC and WENO upwind (IRHS=5) schemes are all

compatible with preconditioning. The two central difference implicit solvers (ILHS=0,2) and the D3ADI solver

(ILHS=4) are compatible with preconditioning, as are the implicit solvers ILHS=5,6 (by reverting to central

differencing). The NAMELIST input parameter BIMIN (βmin in Eq. (1.15), Chapter 1) in &METPRM is used to

control the low-Mach number preconditioning. If BIMIN=1 the preconditioning is disabled; if BIMIN=-1 the

preconditioning is enabled and the preconditioning factor is set to 3Mref
2
. If 0 < BIMIN < 1.0 the preconditioning is

enabled and the input value is used for the preconditioning constant. An example of input for a low-Mach number

preconditioned run is:

Example Input 3.8
&METPRM
 IRHS = 5, ILHS = 2, IDISS = 2, BIMIN = -1,
/
...
&SMOACU
 DIS2 = 10.0, DIS4 = 0.1, SMOO = 0.0,
/

For unsteady flows with preconditioning, dual time stepping must be used. However, effective use of low-

Mach preconditioning with dual time stepping requires careful setting of BIMIN, as discussed in Ref. 6.

Notes on 5th-Order WENO Schemes
 Two upwind 5

th
-order interpolation schemes can be run in conjunction with the AUSM flux scheme

(IRHS=3), the Roe flux scheme (IRHS=4), or the HLLC flux scheme (IRHS=5). All of these schemes require that the

spatial order be set to 5
th

-order (FSO=5). The 5
th

-order spatial WENO scheme is specified using the following

NAMELIST inputs:

Example Input 3.9
&METPRM IRHS = 5,
/
...
&SMOACU FSO = 5,
/

Note that ILIMIT input parameter is not specified in Example Input 3.9. The WENO scheme will be run if IRHS=3,

4, or 5 and FSO=5, and ILIMIT is set to anything but 4. The WENOM scheme will be run if IRHS=3, 4, or 5,

FSO=5, and ILIMIT=4 as shown in the following example.

Example Input 3.10
&METPRM IRHS = 5, ILIMIT = 4,
/
...
&SMOACU FSO = 5,
/

3.4 Turbulence Model Specifications
 OVERFLOW 2.2 contains several turbulence models. Each of these turbulence models also contains a

number of optional corrections and capabilities. The following table contains the baseline turbulence models currently

implemented in the code.

NQT Turbulence Model

0 Baldwin-Lomax
7
 algebraic model

100 Baldwin-Barth
8
 1-equation model

101 Spalart-Allmaras
9
 1-equation model with trip line specification

102 Spalart-Allmaras
9
 1-equation model

Version 2.2 Aug 2010

6

202 k-ω10
 2-equation model using DDADI implicit solver

203 SST
11

 2-equation model using DDADI implicit solver

204 k-ω10
 2-equation model using SSOR implicit solver

205 SST
11

 2-equation model using SSOR implicit solver

Notes on Baldwin Lomax
 The Baldwin-Lomax algebraic model requires that viscous regions (described in Appendix D) be specified in

the &VISINP NAMELIST. The start and end index specification for viscous regions can use negative numbers to

indicate indices relative to the last index value. For example, -1 represents Jmax (Kmax or Lmax), -2 represents Jmax-1, etc.

Thus a region specified as running from 1 to -1 in J will be applied from 1 to Jmax. The ITTYP variable is set to 1 for

boundary layers and to 2 for shear layers. Separate viscous regions should be specified for each wall and shear layer in

the flow field. Note that the eddy viscosity will only be calculated in regions specified with the viscous regions input.

When specifying starting and ending indices for the coordinate direction normal to the applied turbulence

model condition in the &VISINP section, the ending index indicates the end of the search region for the Fmax peak.

Thus the ending index should be beyond the expected edge of the boundary layer, and will serve to cut off the search

for that edge if it has not been found closer to the wall.

The various Baldwin-Lomax boundary layer models all use the same routines. A cutoff value following the

work of Degani-Schiff
12

 is incorporated, but left as an input variable. For this mode of operation, the search for Fmax is

stopped when F drops below the CUTOFF times the current Fmax. For the standard Baldwin-Lomax model, CUTOFF

is set to -1 (default). (Since F is never negative, the search is never stopped because of the cutoff criterion.) For the

standard Degani-Schiff implementation, set CUTOFF=0.9. Note that CUTOFF should be less than one. CUTOFF is

specified as the TLPAR1 parameter in NAMELIST &VISINP. The search for Fmax is stopped when a blanked-out

region is encountered.

For the Baldwin-Lomax shear layer model, the parameter Cwk may need to be modified depending on the type

of free shear layer being modeled. Cwk is specified as the TLPAR1 parameter in NAMELIST &VISINP. The default

value is 2. The search for the center of the shear layer skips over blanked-out regions.

When more than one Baldwin-Lomax turbulence region is specified and the viscous regions are allowed to

overlap, the maximum of the eddy viscosities from all the regions at each point is used in the viscous flux calculations.

An example NAMELIST for a channel flow with a k dimension of 101 is

Example Input 3.11
&GLOBAL NQT = 0,
/
&VISINP
 ITTYP = 1, 1,
 ITDIR = 2, -2,
 JTLS = 1, 1,
 JTLE = -1, -1,
 KTLS = 1, 51,
 KTLE = 51, -1,
 LTLS = 1, 1,
 LTLE = -1, -1,
/

Notes on Setting Boundary Layer Transition Location
 The viscous regions input (Appendix D) can also be used to turn off the production terms for the Baldwin-

Barth, Spalart-Allmaras, k-ω, and SST models in the specified region of the flow. This can be used to force boundary

layer transition at a given point in the flow. This methodology does not accurately simulate the actual boundary layer

transition process – but it does provide a convenient method for assessing the effect of transition location. This is done

by setting ITTYP=102 in the &VISINP NAMELIST. The following is an example for forcing transition at the j=15

point in the grid.

Example Input 3.12
&VISINP
 ITTYP =102,
 ITDIR = 2,
 JTLS = 1,
 JTLE = 15,

Version 2.2 Aug 2010

7

 KTLS = 1,
 KTLE = -1,
 LTLS = 1,
 LTLE = -1,
/

Notes on Specifying Trip Line Location
The viscous regions (Appendix D) are also used to specify the location of trip lines for the NQT=101 version

of the Spalart-Allmaras model. A boundary layer trip line location can be identified by specifying a viscous region

with ITTYP=103. Trip lines should lie within regions specified as viscous wall boundary conditions. The distance

from a field point to the nearest trip line determines the strength of the trip function. Distances are only computed

within a grid zone, e.g., a trip line in grid 1 will not force transition in grid 2 (though transition may occur in grid 2

through convection). The following is an example for forcing transition at the j=15 line on a k=1 wall in the grid.

Example 3.13
&VISINP
 ITTYP =103,
 ITDIR = 2,
 JTLS = 15,
 JTLE = 15,
 KTLS = 1,
 KTLE = 1,
 LTLS = 1,
 LTLE = -1,
/

Notes on Rotation and Curvature Corrections
 Both the Spalart-Allmaras and SST models also have options for applying corrections for rotation and

curvature
13

. These corrections can be used to improve the solution accuracy for flows with strong curvature effects or

for vortical flows. Two corrections are included in OVERFLOW 2.2. These corrections are invoked by specifying the

IRC input in NAMELIST &VISINP.

Notes on Compressibility and Temperature Corrections to the SST Model
 The SST model also includes corrections for compressibility

14
 and temperature

15
. Compressibility tends to

reduce the mixing in a flow. Compressibility effects on the turbulence model begin at about a local Mach number of

one. The compressibility correction is controlled with the ICC input in NAMELIST &VISINP. The compressibility

correction should normally be included with this model and this is the default. The temperature correction is controlled

with the ITC input in NAMELIST &VISINP. The temperature correction can be used when simulating the mixing of

two streams with greatly differing total temperature values. A total temperature gradient will cause an increase in the

mixing of the two streams. This correction should be used with care, and is off by default.

Notes on DES and DDES Hybrid RANS/LES Models
 The Spalart-Allmaras and SST models also include options for running these models as hybrid RANS/LES

models. The detached eddy simulation (DES
16

) and delayed detached eddy simulation models (DDES
16

) models are

available for the Spalart-Allmaras and SST models. The SST Multi-Scale model
17

 is also available. These models are

invoked by specifying the IDES input in NAMELIST &VISINP. These models can also be used with the rotation and

curvature corrections, compressibility corrections, and temperature corrections.

3.5 Variable γγγγ and Multispecies
OVERFLOW 2.2 supports variable γ and multispecies calculations. The IGAM input parameter in

NAMELIST &VARGAM is used to specify the type of gas model desired. The default gas model is a constant γ

specified by setting IGAM=0. The value for γ can be set by the GAMINF input parameter in NAMELIST

&FLOPRM. The default value for γ is 1.4.

Important note: the use of variable gas properties (i.e., γ as a function of temperature) is not implemented in a

fully correct manner, and is not recommended at this time. This includes any setting of ALT1-ALT4 or AUT1-

AUT4≠0. The simulation of flows with multiple species is handled correctly as long as each species uses a constant γ.

Version 2.2 Aug 2010

8

Notes on Single Gas with Varying Gas Properties

 If IGAM=1 the code assumes a single gas with the variation of cp/R (or γ/(γ-1)) given by

4

4
3

3
2

210
1

TaTaTaTaa
R

cp ++++=
−

=
γ

γ
 (3.4)

The following is an example input for a variable γ single species simulation.

Example Input 3.14
&VARGAM
 IGAM = 1,
 ALT0 = 3.653,
 ALT1 =-0.1334E-2,
 ALT2 = 0.3293E-5,
 ALT3 =-0.1913E-8,
 ALT4 = 0.2763E-12,
 AUT0 = 3.045,
 AUT1 = 0.1338E-2,
 AUT2 =-0.4883E-6,
 AUT3 = 0.8556E-10,
 AUT4 =-0.5702E-14,
/
...
&SCEINP /

No species equation is required for this option, so no input is specified for the &SCEINP NAMELIST. The ALT0-

ALT4 inputs are for the temperature range (540
o
R ≤ T ≤ 1800

o
R), and AUT0-AUT4 inputs are for the range (1800

o
R

≤ T ≤ 9000
o
R).

Notes on 2-Species Variable γγγγ
 A special option exists for simulating flows with two species, where the values of stagnation enthalpy of the

two streams are significantly different. In this case, the stagnation enthalpy is used to determine the species

concentration, rather than solving separate species equations. This option is particularly useful for rocket plumes, and

is selected by setting IGAM=2. Sample input for a 2-species simulation using the IGAM=2 option is given below.

Example Input 3.15
&VARGAM
 IGAM = 2,
 HT1 = 2.0, HT2 = 5.0,
 SCINF = 1.0, 0.0,
 SMW = 28.97, 20.13,
 ALT0 = 3.50, 4.85,
/
...
&SCEINP /

In this case we let ALT1-ALT4 and AUT1-AUT4 default to 0 so as to simulate two gases each with constant γ. The

free-stream species concentrations for gas 1 and gas 2 are given by SCINF; here the free-stream is comprised of all gas

1. The molecular weights for the two gases are specified by SMW, and can be given as absolute values or as ratios to

the free-stream molecular weight. The molecular weights are used to compute the gas constant R for each species. The

stagnation enthalpy ratios HT1 and HT2 are used to determine the species concentrations. HT1 is the value of h0/h0
¥

below which the mixture is assumed to be all gas 1, while HT2 is the value above which the mixture is assumed to be

all gas 2. In between, the species concentration is a linear function of the local stagnation enthalpy ratio.

Notes on Multi-Species
 Finally, the following input is an example where the species equation solver is used to simulate a flow with

two species. Note that the species equations are solved loosely coupled with each other and with the mean flow

Version 2.2 Aug 2010

9

equations. The use of Newton or dual-time step sub-iterations improves the coupling since information is shared

between each sub-iteration.

Example Input 3.16
&GLOBAL NQC = 2, /
&VARGAM
 SCINF = 1.0, 0.0,
 SMW = 28.97, 20.13,
 ALT0 = 3.50, 4.85,
 SIGL = 1.0, 1.0,
 SIGT = 1.0, 1.0,
/
&SCEINP
 ITLHIC = 10, IUPC = 2, FSOC = 3,
/

SIGL and SIGT are the laminar and turbulent Schmidt numbers, respectively, for each species.

 OVERFLOW 2.2 has three options for the species convection terms: central differencing (IUPC=0), upwind

differencing (IUPC=1), and the HLLC upwind differencing (IUPC=2). Central differencing is always 2
nd

-order in

space, while upwind differencing may be 1
st
-, 2

nd
-, or 3

rd
-order in space, and HLLC may be 1

st
-, 2

nd
-, or 3

rd
- or 5

th
-order

in space. The species equations may be implicitly solved using an ADI method (ITLHIC=1) or using an SSOR solver

(ITLHIC>1). ITLHIC specifies the number of iterations to use in the matrix solution process. Ten iterations are

recommended for the SSOR method. The utility code vgplot (see Chapter 7) can be used to post-process the

OVERFLOW 2.2 output.

 OVERFLOW recalculates the value of free stream γ using the reference temperature and species in

NAMELIST &FLOPRM when IGAM=1 or 2 or if multiple species are present. The new value of GAMINF is used

in the code and written to the q.save restart file. The input value of GAMINF is ignored.

3.6 Boundary Condition Specification
All boundaries must have a boundary condition specified in the &BCINP NAMELIST, with the exception of

interpolated boundaries. As with viscous regions, the start and end index specification for boundary conditions can use

negative numbers to indicate indices relative to the last index value. For example, -1 represents Jmax (Kmax or Lmax), -2

represents Jmax-1, etc. Thus a region specified as running from 1 to -1 in J will be applied from 1 to Jmax. When

specifying a boundary condition region, it is expected that the start and end indices will be equal in the coordinate

direction normal to the applied boundary condition (IBDIR). The only exceptions to this rule are prescribed Q

(IBTYP=42), blanked-out region (IBTYP=61), copy-to/copy-from (IBTYP=70/71), vortex generator vane model

(IBTYP=601), and the unsteady flow output region (IBTYP=201). Boundary conditions are applied in the order in
which they are specified. A list of boundary conditions supported in OVERFLOW 2.2 is given in Appendix C.

Notes on Wall BC’s IBTYP = 1-9

Wall boundary conditions (IBTYP=1-9) use a slow start if the free stream Mach number is above 0.5. The

slow start ramps the imposition of the boundary condition from time step 0 to time step 30. For the constant

temperature wall boundary conditions (IBTYP=3,4,7,8), Twall (degrees Rankine) is specified by setting BCPAR1 in

NAMELIST &BCINP. IBTYP=9 gives a viscous adiabatic wall with rotation. BCPAR1 specifies the rotation rate

(radians per unit time, non-dimensionalized by Vref), and BCPAR2=1,2,3 gives the axis of rotation (x, y, or z).

Notes on Periodic BC’s IBTYP = 10,18
 Two types of periodic boundaries are supported in OVERFLOW 2.2. IBTYP=10 is used for grids such as

bodies of revolution where the first and last planes for a given index are identical in space. The boundary condition

does not require any additional grid planes. IBTYP=18 may be used for periodic boundaries such as an infinite

channel where the first and last plane are identical, but not co-located in space. Both boundary conditions need only be

applied to one plane (normally the J, K, or L=1 plane). The boundary condition will update both planes in the solution

process. All periodic boundaries are treated implicitly inside the code.

Notes on Symmetry BC’s IBTYP = 11-13,17

The symmetry boundary conditions IBTYP=11,12,13 require a reflection plane be included in the grid. The

flow equations will be solved on the symmetry plane and the boundary condition is applied on the reflection plane.

Version 2.2 Aug 2010

10

The symmetry boundary condition IBTYP=17 does not require a reflection plane be included in the grid. This

boundary condition is a slip wall with second-order extrapolation, and hence the flow equations are not solved on the

symmetry plane. The slip wall boundary conditions (IBTYP=1 and 2) can also be used for a symmetry boundary

condition.

Notes on Polar Axis BC’s IBTYP = 14-16
The polar axis boundary conditions (IBTYP=14,15,16) extrapolate values to the axis to set the derivative to

zero at the axis. The value at the axis is computed as

()2110
3

ffff −+= α (3.5)

where f0 is the desired value at the axis, and fn the value at the nth point from the axis. Setting α=0 results in 0

th
-order

extrapolation, while α=1 reflects a 1
st
-order condition. The value of α is specified by setting BCPAR1 in NAMELIST

&BCINP. The default value for α is 1. The most stable value for α is 0. Once values are extrapolated for all points

around the axis, they are averaged to obtain the final value used on the axis.

Notes on 2D BC IBTYP = 21
 The 2D boundary condition IBTYP=21 assumes that the flow is in the x-z plane. The grid should contain

three constant y-planes with y=-1, 0, and 1. The best code efficiency occurs when the L-index is used for the y-planes

(Lmax=3). This boundary condition may be applied to the first or last index plane.

Notes on the Axisymmetric BC IBTYP = 22
 The axisymmetric boundary condition IBTYP=22 assumes that the flow is in the x-z plane. The grid should

contain three planes with the first and last planes rotated +/-1
o
 from the center plane. The best code efficiency occurs

when the L-index is used for the y-planes (Lmax=3). This boundary condition may be applied to the first or last index

plane.

Notes on Supersonic/Subsonic Inflow/Outflow BC IBTYP = 32
 The supersonic/subsonic inflow/outflow boundary condition (IBTYP=32) does the following: for supersonic

inflow, boundary values are left at their current state; for subsonic inflow, a characteristic condition based on Riemann

invariants is applied (also referencing existing flow conditions on the boundary); for subsonic outflow, pressure is held

constant while other flow quantities are extrapolated; and for supersonic outflow, all variables are extrapolated. Note

that this condition typically uses some or all values already on the boundary. Other boundary conditions, however, use

this condition in combination with fixing certain boundary values.

 General advice: use ITBYP=47 as a “general-purpose” far-field boundary condition instead of 32. BC 32 is

subject to corruption of flow conditions on the boundary due to transient flow during convergence (for example, the

boundary becoming outflow temporarily). BC 32 can also exhibit glitches where a far-field boundary switches from

inflow to outflow, due to the different types of boundary conditions imposed.

Notes on Freestream/Characteristic Inflow/Outflow BC IBTYP = 47
 This boundary condition imposes free-stream conditions on the boundary, then applies a characteristic

condition, taking information from the boundary or the interior of the domain, as appropriate, based on the velocity

component normal to the grid boundary. This boundary condition is appropriate for use as a general-purpose far-field

condition.

Notes on Specified Pressure Outflow BC IBTYP = 33
The specified pressure outflow condition (IBTYP=33) fixes pressure and extrapolates other flow quantities.

This boundary condition can be used to control mass flow for internal flows. Mass flow can be adjusted by changing

the specified pressure value. The outflow pressure p/p∞ is specified by setting BCPAR1 in NAMELIST &BCINP.

Notes on Specified Mass Flow BC’s IBTYP = 34,36
 The mass flow boundary conditions IBTYP=34,36 attempt to drive to a specified mass flow rate by adjusting

the exit pressure for an internal flow. For IBTYP=34, the pressure will be a constant across the exit face, while for

IBTYP=36, the pressure is allowed to vary. The current flow rate predicted by the code is calculated using the

Version 2.2 Aug 2010

11

FOMOCO subroutines, allowing the integration plane to be composed of multiple grids. The target mass flow is

specified by setting BCPAR1 in NAMELIST &BCINP. BCPAR2 is used to specify the number of time steps

between updates of the exit pressure and the relaxation value for the exit pressure. This is done to improve the

convergence and robustness of this boundary condition. The relaxation value varies between 0 and 1. BCPAR2=10.5

would tell the code to update the pressure every 10 time steps with a relaxation value of 0.5. The default value for

BCPAR2 is 1.2 (update every iteration with 0.2 relaxation factor). BCFILE is used to specify the name of the

component surface in the FOMOCO input file to be integrated to get the mass flow. The reference area (Aref) will also

be obtained from the specified FOMOCO input file for the component surface name specified in BCFILE. The target

non-dimensional mass flow (mɺ) is defined as

refAU

m
m

∞∞

=
ρ
ɺ

ɺ (3.6)

 The mass flow used with turbine engines is often specified in terms of the “corrected mass flow” (cmɺ), where

a correction is used to scale the mass flow to standard day sea-level conditions. The corrected mass flow is defined as

δ
θ

mmc
ɺɺ = (3.7)

where

sd

t

sd

t

P

P

T

T ∞∞ == δθ , (3.8)

Here the standard day temperature (Tsd) is taken as 518.67
o
R and the standard day pressure (psd) is 14.6958 psi. The

target non-dimensional mass flow for this boundary condition using corrected mass flow can then be written as

()
()
() ()

()
()

∞

∞
∞

−
+

∞
∞

∞

∞
∞

−
+

∞
∞ ∞

∞

∞

∞

 −+
=

 −+
=

R

R
AMa

Mm

R
AM

T

p

Mm

m

sd

sd
refsdsd

c

ref

sd

sd

c

γ
γρ

γ

γ

γ γ
γ

γ
γ

12

1

2
12

1

2

2

1
1

2

1
1 ɺɺ

ɺ (3.9)

where ρsd is standard day density (0.07657 lbm/ft
3
) and asd is the standard day speed-of-sound (1117 ft/sec). Rsd and R∞

are the standard and reference gas constants respectively.

Notes on Inflow BC IBTYP = 41, 141, 143
The inflow boundary conditions IBTYP=41, 141, and 143 allow total pressure (pt/pt∞) and total temperature

(Tt/Tt∞) to be specified using BCPAR1 and BCPAR2, respectively. All of these boundary conditions use a Riemann

extrapolation of static conditions with the total conditions to determine the inflow values. IBTYP=41 does this on a

point-by-point basis. Existing velocity direction on the boundary face is used, and velocity magnitude may vary across

the face. IBTYP=141 averages over the face and sets uniform conditions on the boundary with a velocity normal to

the face. These boundary conditions are often used for nozzle inflow cases since they can allow the mass flow to vary

during the convergence process. Note that the entire face must be included in a single grid for the averaging in

boundary condition IBTYP=141 to work properly. IBTYP=143 is the same as 141, except that BCFILE is used to

specify a FOMOCO component for averaging of static flow conditions and surface normal.

Notes on Prescribed Q BC IBTYP = 42 & 45
Boundary conditions IBTYP=42 and 45 read the Q flow variables from a file. The Fortran unformatted

boundary condition file has the format of a (single-grid) OVERFLOW Q restart file:

Version 2.2 Aug 2010

12

 READ(10) J1,K1,L1

 READ(10)

READ(10) Q(JS:JE,KS:KE,LS:LE,1:NQ)

Here the Q header information, if present, is ignored. Dimensions in the Q file (J1,K1,L1) must match the

computational region over which the boundary condition is applied, i.e., J1=JE-JS+1, etc. The file is read every

iteration.

A starting step (iteration) number for the boundary condition can be specified in BCPAR1. This allows a

converged solution to be obtained, then a plume exit condition to be imposed. Further, a slow-start may be imposed by

setting BCPAR2 to the number of steps to ramp up the boundary condition. Boundary condition IBTYP=45 reads Q

from a file, then imposes the inflow/outflow condition used in IBTYP=32.

Notes on Actuator Disk BC IBTYP = 44
The actuator disk (IBTYP=44) is modeled by averaging Q variables across the disk, then adjusting pressure in

planes adjacent to the disk to impose the required ∆p. The pressure jump ∆p/p∞ is specified by setting BCPAR1 in

NAMELIST &BCINP. IBDIR indicates the flow direction.

Notes on Jet Mass Flow BC IBTYP = 48 & 148
Boundary condition IBTYP=48 and 148 are simple jet mass flow boundary conditions for steady and

unsteady jets. The steady condition (IBTYP=48) uses BCPAR1 to specify the mass flow ratio (ρV)jet/(ρV)∞. The

unsteady condition (IBTYP=148) uses BCPAR1 to specify the flow solver step number which corresponds to time

t=0. The file BCFILE includes four numbers, the minimum (Xmin) and maximum (Xmax) mass flow rates, and the

frequency f and phase angle φ of the sinusoidally varying jet strength. The time-varying mass flow is scaled by

()φπ +−++= ft
XXXX

M scale 2cos
22

minmaxminmax
 (3.10)

The format for the formatted file for IBTYP=148 is

 READ(20,*) XMIN,XMAX,XFREQ,XPHASE

For both conditions, stagnation enthalpy and pressure are extrapolated from the interior of the domain.

Notes on the Blanked Region BC IBTYP=61
 A region of a grid may be blanked out using the blanked region boundary condition (IBTYP=61). If this

boundary condition is used in conjunction with the DCF overset grid assembly the code will attempt to interpolate the

fringe points surrounding the blanked region to the level specified by the NAMELIST &OMIGLB input LFRINGE.

The default is double fringe.

Notes on Slotted Wind Tunnel Wall BC IBTYP = 82
For the slotted wind tunnel wall boundary condition (IBTYP=82), the factor R is specified by setting

BCPAR1 in NAMELIST &BCINP. Typically, R is set to 19 times the wall porosity ratio. For example, for the

NASA Ames 11’ x 11’ wind tunnel with a 6% wall porosity, R=19x0.06 is used. See Ref. 18. At present, the tunnel

walls are expected to be parallel to the free-stream flow.

Notes on Wind Tunnel Exit BC IBTYP = 86
For the wind tunnel exit condition (IBTYP=86), BCPAR1 sets the area ratio Aexit/Aref. Density and pressure

are extrapolated to the exit plane, and the velocity is set (to a constant across the face), such that the mass flow is equal

to a free stream flow through the reference area. Velocity direction is assumed to be the same as the free stream.

Note that while this boundary condition ensures that the desired mass flow is pulled through the boundary

condition face, it destroys any flow features (such as boundary layers) that are present. It should thus be applied far

from regions of interest in the flow.

3.7 Unsteady Flow Output Options

Version 2.2 Aug 2010

13

Two options for extracting information from unsteady flow calculations for post-processing have been

incorporated into OVERFLOW 2.2. The first option is to output the current values of the solution variables for a

specified region of the flow. This is accomplished through specifying a region using boundary condition IBTYP=201.

The output for any grid may be a point, line, surface, or volume subset of the grid. The output is written to a Fortran

unformatted output file. The file format can be found in Appendix A. This file is not deleted during restarts, and

output from subsequent runs is appended to the file. Unsteady output files are not written for coarse mesh solutions

during grid sequencing. BCPAR1 can be used to specify the iteration number to start saving flow information, and

BCPAR2 can specify the iteration increment for saving. Information will be saved when mod(step#,BCPAR2)=0. The

output file will be written to the file name specified by BCFILE. If no name is specified, the file will be written to the

file BC_201.n.ib where n is the grid number and ib is the BC number.

 For the second option, it is sometimes desirable to obtain a time-averaged flow field for the entire grid system

during an unsteady flow simulation. This can be accomplished by setting the ISTART_QAVG input variable in the

&GLOBAL NAMELIST to the iteration number when the user would like to begin averaging. A file called q.avg will

be output using a modified PLOT3D Q file format, described in Appendix A.

 The following example input is for a generic weapons bay. This input file uses both unsteady output options.

The grid system has two grids, a flat plate and the bay. The time-averaging of the unsteady flow field begins after

iteration 2300. The Q variables for each time step are extracted on the bay centerline using BC 201, for later Fourier

analysis.

 This example also uses the DCF grid assembly, which will be described in Chapter 4. Triple-fringe

interpolations are used in conjunction with 4
th

- and higher-order inviscid flux schemes.

Example Input 3.17
&GLOBAL
 NSTEPS = 12300, RESTRT = .F.,
 MULTIG = .F., FMG = .T., FMGCYC = 150,150,
 DTPHYS = 0.1, NITNWT = 5,
 NQT = 102,
 ISTART_QAVG = 2300,
/

&OMIGLB LFRINGE = 3,
/
&DCFGLB DQUAL = 0.05,
/
&GBRICK OBGRIDS = .F.,
/
&BRKINP /
&GROUPS /

&FLOINP
 FSMACH = 0.95, REY = 2.083E5, TINF = 465.9,
/
&VARGAM /

&GRDNAM NAME = 'plate', /
&NITERS /
&METPRM
 IRHS = 5, ILIMIT = 3, ILHS = 6,
/
&TIMACU ITIME = 0,
/
&SMOACU FSO = 5,
/
&VISINP
 WALLFUN = .T., FSOT = 1,
 IDES = 2, IRC = 0,
/
&BCINP
 IBTYP = 1, 5, 5, 5, 5, 40, 30, 47, 47, 47 ,
 IBDIR = 3, 3, 3, 3, 3, 1, -1, 2, -2, -3 ,
 JBCS = 1, 11, 41, 41,161, 1, -1, 1, 1, 1 ,

Version 2.2 Aug 2010

14

 JBCE = 10, 41,161,161, -1, 1, -1, -1, -1, -1 ,
 KBCS = 1, 1, 1, 81, 1, 1, 1, 1, -1, 1 ,
 KBCE = -1, -1, 31, -1, -1, -1, -1, 1, -1, -1,
 LBCS = 1, 1, 1, 1, 1, 1, 1, 1, 1, -1 ,
 LBCE = 1, 1, 1, 1, 1, -1, -1, -1, -1, -1 ,
/

&SCEINP /
&SIXINP /

&GRDNAM NAME = 'bay', /
&NITERS /
&METPRM /
&TIMACU /
&SMOACU /
&VISINP /
&BCINP
 IBTYP = 5, 5, 5, 5, 5, 201,201,201,
 IBDIR = 3, 1, -1, 2, -2, 1, -1, 3,
 JBCS = 1, 1, -1, 1, 1, 1, -1, 1,
 JBCE = -1, 1, -1, -1, -1, 1, -1, -1,
 KBCS = 1, 1, 1, 1, -1, 26, 26, 26,
 KBCE = -1, -1, -1, 1, -1, 26, 26, 26,
 LBCS = 1, 1, 1, 1, 1, 1, 1, 1,
 LBCE = 1, 51, 51, 51, 51, 51, 51, 1,
/
&SCEINP /
&SIXINP /

3.8 Initializing the Solution
 The flow will be initialized to the conditions in the &FLOINP NAMELIST (FSMACH, ALPHA, BETA,

RETINF (for 1- and 2-equation turbulence models), and XKINF (for 2-equation turbulence models) when

RESTRT=.FALSE. This is the normal mode for initializing the flow field. Boundary condition IBTYP=42 can also

be used to initialize a boundary to some other value.

 The user may also generate a restart file (q.restart) and use this file to initialize the flow field by setting

RESTRT=.TRUE.. Previous solutions at different values of FSMACH, ALPHA, BETA, RETINF, or REY may

also be used to initialize the flow field. OVERFLOW 2.2 will adjust values in the Q file for the input parameters that

have been changed (i.e., rotate the velocity vector or scale the conserved variables for varying free-stream Mach

number). This is often an easy way to initialize complex flow fields once an initial flow solution is obtained at one

condition.

 Supersonic and hypersonic flows with blunt forward-facing surfaces are often hard to initialize when using

upwind flux algorithms. These upwind algorithms will generate a non-physical bow shock between the surface and the

first point off the wall. This is a numerically-acceptable solution for an upwind solver in supersonic flow, since the

eigenvalues of the flux system are all possitive. Two methods may be used to avoid this difficulty. The first option is

to start the solution with a transonic or low supersonic free-stream Mach number. Once a region of subsonic flow is

obtained in the nose region, the free-stream Mach number may be increased with successive restarts. It is often

convenient to use the coarse mesh with grid sequencing during this ramp-up to expedite the process. (It is often

sufficient to take one step with FSMACH=0.8 before resetting FSMACH to the desired value.) A second option is to

initially run the solution using the central difference flux algorithm and switch to the upwind algorithm after subsonic

flow is established in the nose region. Again it is usually good to perform these initializing runs using the coarse grid

and grid sequencing. It also may be necessary to increase the 2
nd

-order smoothing (DIS2) and 4
th

-order smoothing

(DIS4) for the central difference algorithm above the default values during the initializing steps. Values of DIS2=5,

DIS4=0.1 are recommended.

 Grid sequencing may be used to allow the proper mass flow to develop quickly on the coarse grids for internal

flows as shown in the following example for a two-dimensional duct.

Example Input 3.18
&GLOBAL
 NSTEPS = 0, RESTRT = .F.,
 MULTIG = .F., FMG = .T., FMGCYC = 500,0,

Version 2.2 Aug 2010

15

 DTPHYS = 0.1, NITNWT = 5,
 NQT = 102,
/

&FLOINP
 FSMACH = 0.3, REY = 2.0E6, TINF = 465.9,
/
&VARGAM /

&GRDNAM NAME = 'duct', /
&NITERS /
&METPRM
 IRHS = 5, ILIMIT = 3, ILHS = 6,
/
&TIMACU ITIME = 0,
/
&SMOACU FSO = 3,
/
&VISINP
 WALLFUN = .T., FSOT = 1,
/
&BCINP
 IBTYP = 5, 5, 41, 33, 21,
 IBDIR = 2, -2, 1, -1, 3,
 JBCS = 1, 1, 1, -1, 1,
 JBCE = -1, -1, 1, -1, -1,
 KBCS = 1, -1, 1, 1, 1,
 KBCE = 1, -1, -1, -1, -1,
 LBCS = 1, 1, 1, 1, 1,
 LBCE = -1, -1, -1, -1, 1,
 BCPAR1(3) = 1.0,
 BCPAR2(3) = 1.0,
 BCPAR1(4) = 1.0,
/

The solution will only be calculated on the coarse grids using this input. The inflow boundary is specified to have

pt/pt∞=1.0 and Tt/Tt∞=1.0. The outflow pressure is set to p/p∞=1.0. The inflow or outflow conditions may be varied to

obtain the desired mass flow for the duct. The solution can then proceed to the intermediate and fine grids.

3.9 Running the Code
 The NAMELIST input needs to be contained in a file named over.namelist for both the serial and MPI

versions of the code. Once the input files are generated, the serial code can be run with the following command

 ./overflow

The MPI version of the code can be run with the following command

 mpirun –np # ./overflowmpi

The tools/run directory contains two scripts, overrun and overrunmpi, that can be used to execute the flow solver.

The scripts allow the user to run a series of separate input files and manages the restart and output files for the user.

These scripts do the following

1. Move *.save file to *.restart files before restarting

2. Highlights warnings and errors

3. Creates a log file with time/date, machine name, executable name, and NAMELIST input file name

4. Concatenates output history files upon completion

Version 2.2 Aug 2010

16

The scripts expect the NAMELIST input files to use the naming convention basename.inp or basename.n.inp where

basename is the case name and n is an identifying number or text for the NAMELIST file. The script for the serial

version of the code is executed with the command

 overrun basename n

The script to run the MPI solver is run with a command that mimics the mpirun command

 overrunmpi –np <ncpus> basename n
or

 overrunmpi –np <ncpus> -machinefile <hostfile> basename n

Use of these run scripts is highly recommended.

 The code initially performs checks on the NAMELIST input. A summary of the NAMELIST parameters is

written to standard out for each mesh. If any errors in the input are encountered they are reported to standard out and

the code execution halts. Next the code will perform automatic grid splitting for multi-processor runs. A summary of

the grid decomposition and grouping is also written to standard out. The code will then report convergence information

for each mesh to standard out every ten iterations. The code provides a summary of code timing and performance

parameters at the end of the run.

 The code will write a number of files during the execution. The resid.out text file contains the residual for

each grid at each sub-iteration. The rpmin.out text file contains the minimum density, pressure, γ, the number of

reverse flow points, the number of supersonic points, and maximum value of eddy viscosity at each iteration. The

timers.out file is written at the completion of a run and contains timing information for OVERFLOW 2.2. This file

has timing information broken down in several different ways. The turb.out file has the turbulence transport equation

residual information when a transport turbulence model is used. The fomoco.out file contains forces and moments on

the components identified in the mixsur.fmp file. The formats for these files are included in Appendix A. These files

are overwritten each time the code is started; again, the overrun and overrunmpi scripts append these to the

corresponding basename.resid, basename.rpmin, etc. files. Similar to the overrun script, the Chimera Grid Tools

utility overplot can be executed to plot many of the OVERFLOW history files by typing

 overplot basename

or by typing

 overplot resid.out

This allows the user to assess convergence of the code during a run. An overplot example for the mean flow equation

residual (resid.out) is shown below.

Version 2.2 Aug 2010

17

Example 3.19 overplot utility

 The solution is written to the q.save restart file. The format of the restart file is in Appendix A. The restart

file is written out at the time step increment given by the &GLOBAL NAMELIST parameter NSAVE (default = 100).

The restart file will be written to a file named q.# where number is the iteration number if NSAVE is set to a negative

number. (In this case a q.save file is also written on completion of the run.) The overrun or overrunmpi script

automatically copies the q.save file to q.restart prior to starting the code. If OVERFLOW is run without the script,

this must be done manually. Note that writing a q.save file can take a significant amount of time, especially for a large

grid system using MPI. For efficiency, be sure that the solution is saved only as often as necessary for checkpointing

or saving the run. If NSAVE=0, q.save is only written at the end of the run.

After each iteration, OVERFLOW 2.2 checks for the existence of a file named STOP in the current directory.

If this file exists, the code will save the current flow solution and stop. This can be used to stop a run gracefully,

without losing the work done so far. For example, if a job has been running for an extended length of time, one can go

to the directory where the job was started from and type touch STOP. This creates a (zero-length) file STOP. When

OVERFLOW 2.2 finishes the current iteration, it finds the file, saves q.save, and stops. As an alternative, an asci

STOP file can be created containing an iteration number. If OVERFLOW has passed this iteration, the code will write

q.save and stop at the end of the current iteration; otherwise it will stop at the end of the specified iteration. The STOP

file is deleted by OVERFLOW 2.2 before exiting. The overrun and overrunmpi scripts will check for a STOP file

before starting. If this file is found, the run will be aborted. (The contents of the file are not checked.)

OVERFLOW 2.2 also checks for a SAVE file following each iteration, though this check is only done during

iterations on the fine-grid level. This file can be created using the touch command similar to the STOP file discussed

in the previous paragraph. If the SAVE file is an asci file containing an iteration number, a q.save file is written after

that iteration, and the run continues. If no number is present, or the iteration is already past, a q.save file is written

after the current iteration.

The code may be run in parallel using MPI, OpenMP, or in a hybrid mode that uses both MPI and OpenMP.

The MPI mode can be used for both distributed memory machines (PC clusters) and shared memory machines. MPI

divides the work between processors based on the grid system. The grid system will be decomposed and groups of

subgrids will be established for load balancing when using MPI. MPI will almost always yield good parallel

performance. OpenMP is useful for shared memory machines or dual- or quad-core machines. OpenMP performs

parallelization at the loop level in the code, and hence does not require grid decomposition. Not all machines or

compilers will have good parallel performance when using OpenMP. The hybrid mode is useful on machines that will

support both MPI and OpenMP.

The grid system is automatically decomposed when using MPI to achieve the best load-balancing possible.

The number of groups for the run is set to the number of MPI processes selected for the parallel run. The default load-

balancing scheme is based on equal distribution of grid points between processes (i.e., target group size). Grids are

Version 2.2 Aug 2010

18

split in half (with overlap added) until each grid is less than half the target group size. Grids are then distributed, from

largest to smallest, to the current smallest group. Besides the number of grid points, each grid is additionally weighted

by whether multigrid is used, and if multiple iterations are done compared to other grids (ITER in NAMELIST

&NITERS). This scheme works quite well for grid systems with large numbers of grids, and reasonably well for

smaller systems. Grid splitting introduces additional explicit boundaries, which affects the convergence behavior of

the implicit algorithms in the code. Sub-iterations can be used to reduce the effect of the interpolated boundaries.

OVERFLOW allows the user to control the load-balancing process, but these inputs are rarely used in code

execution. The grdwghts.restart file contains previous timing information for each grid. If the &GLOBAL

NAMELIST parameter GRDWTS=.TRUE., the code will use the information in this file to perform the load balancing.

If GRDWTS=.FALSE., the code will use the default load-balancing scheme. The input parameter

MAX_GRID_SIZE can be used to explicitly control the splitting of grids. MAX_GRID_SIZE=0 selects the default

grid splitting algorithm. If MAX_GRID_SIZE>0, the code will use the specified weighted grid size for splitting. If

MAX_GRID_SIZE<0, grids will not be split.

In OVERFLOW-D-mode, some additional controls are available. In the &GROUPS NAMELIST, input

parameters MAXNB and MAXGRD substitute for MAX_GRID_SIZE, and allow distinction between the splitting of

near-body and off-body grids, respectively. The input parameter WGHTNB is an additional weight-factor applied to

near-body grids, in case a different numerical scheme is used which significantly affects the processing of these grids.

Finally, IGSIZE sets the maximum group size of each MPI process during grid adaptation. This allows the code to

stop if the adaption procedure produces a grid system that is too large for the current number of MPI processes.

The grid splitting summary is written to standard out as shown below.

Example 3.20
Target (weighted) near-body grid size from grouping : 12862
Checking near-body grids...
Original number of near-body grids: 2
 Splitting grid 1 at K = 20
 Splitting grid 1 at K = 11
 Splitting grid 2 at K = 20
 Splitting grid 2 at K = 11
 Splitting grid 3 at J = 121
 Splitting grid 5 at J = 121
Final number of near-body grids: 8

Target (weighted) off-body grid size from grouping : 14752
Checking off-body grids...
Original number of off-body grids: 30
 Splitting grid 9 at J = 59
Final number of off-body grids: 31

Grouping information and expected parallel speedup is also reported to standard out as shown.

Example 3.21
Load balance will be based on grid size.

 Summary of work distribution for 4 groups:

 Group Kpts %load Grid list
 1 30 100 4 8 11 17 14 22 21 33 31 34
 39
 2 29 99 6 7 12 19 13 18 20 32 26 37
 3 30 100 1 9 3 23 24 28 30 35 38
 4 30 100 2 10 5 15 25 29 27 36 16

 Predicted parallel efficiency is 100%,

 based on a maximum of 30K grid points per group
 compared to an average of 30K points (weig hted)

 Estimated parallel speedup is 4.0

Version 2.2 Aug 2010

19

Finally, the actual parallel performance is written to standard out at the end of the run as shown below.

Example 3.22
GROUP TIMING SUMMARY (Time each group spent in OV ERFL)
 (*) STEP loop, (/) Chimera BC, (a) Adapt, (D) DCFC RT, (s) Grid & Q save

 0 25 50 75 100
 |-----------|------------|------------| -----------|
Group: 1 |***********************///aaaaaaaaaaaa aaaaaaaDDs 97%
Group: 2 |***********************///aaaaaaaaaaaa aaaaaaaDD 98%
Group: 3 |***********************///aaaaaaaaaaaa aaaaaaaDD 97%
Group: 4 |***********************///aaaaaaaaaaaa aaaaaaaDDs 99%

 Overall Measured Parallel Efficiency: 97.9%

3.10 Test Cases
 A number of example problems are included in the test subdirectory. These cases provide examples of both

input and code execution. These test cases include

• Simple 2D cases (steady flow, single grid):

– flat_plate, flat_plate_high_re

– flat_plate_wf (wall-function test case)

– shear_layer

– driven_cavity_2d

– curved_wall_2d (curvature correction test case)

– 3gas (simple multiple species convection case)

– nozzle (rocket nozzle inflow/outflow boundary conditions)

– cylinder (inviscid Mach 8 flow), cyl_holden (viscous Mach 16 flow)

• Transonic 2D or axisymmetric cases (steady flow, single grid):

– bump (axisymmetric bump, shock-induced separation)

– naca, naca4412, naca_ogrid

– et_axi, srb_axi

– normal_jet_2d (2-gas, time-accurate jet-in-crossflow)

• 2D multiple grids:

– af3_96 (multi-element airfoil)

– cascade

– eggers, seiner (jet plume test cases)

– powered_nacelle (jet engine inflow/outflow boundary conditions)

– airfoil_adapt (off-body solution adaption)

– normal_jet_adapt (2-gas, time-accurate with off-body solution adaption)

• 2D moving body cases:

– airfoil_drop_2d

– rotating_paddle_2d

– pitching_airfoil_2d

• Classical time-accurate cases:

– shock_tube

– vortex_convection, vortex_convection_HiO, lambVortex_convection

– stokes_1st_problem (impulsively started plate)

– oscillating_sphere (acoustic test case)

• Subsonic/transonic 3D (steady, single grid):

– m2129_s_duct (S-duct inlet)

– rotating_disk (infinite rotating plate)

– onera_m6 (classic transonic wing test case)

– inf_swept (infinite swept wing)

– ogive_cylinder

• Subsonic/transonic 3D (steady, multiple grid):

– wingbody (AGARD test case)

Version 2.2 Aug 2010

20

– bizjet (assembling and running a wing/body/pylon/nacelle)

– robin_sym (helicopter fuselage, illustrates some numerical problems)

References

1. Suhs, N.E., Rogers, S.E., and Dietz, W.E.,”PEGASUS 5: An Automated Pre-Processor for Overset-Grid

CFD,” AIAA-2002-3186, June 2002.

2. Noack, R., “SUGGAR: A General Capability for Moving Body Overset Grid Assembly,” AIAA-2005-5118,

Jun. 2005.

3. Chan, W.M., and Buning, P.G., “User's Manual for FOMOCO Utilities – Force and Moment Computation

Tools for Overset Grids,” NASA TM 110408.

4. Boger, D., and Dreyer, J., “Prediction of Hydrodynamic Forces and Moments for Underwater Vehicles Using

Overset Grids,” AIAA-2006-1148, Jan., 2006.

5. Pandya, S.A., Venkateswaran, S., and Pulliam, T.H., “Implementation of Preconditioned Dual-Time

Procedures in OVERFLOW”, AIAA-2003-0072, Jan. 2003.

6. Potsdam, M.A., Sankaran, V., and Pandya, S.A., “Unsteady Low Mach Preconditioning with Application to

Rotorcraft Flows,” AIAA-2007-4473, June 2007.

7. Baldwin, B.S., and Lomax, H., “Thin Layer Approximation and Algebraic Model for Separated Turbulent

Flows,” AIAA-78-0257, Jan. 1978.

8. Baldwin, B.S., and Barth, T.J., “A One-Equation Turbulence Transport Model for High Reynolds Number

Wall-Bounded Flows,” AIAA-91-0610, Jan. 1991.

9. Spalart, P.R., and Allmaras, S.R., “A One-Equation Turbulence Model for Aerodynamic Flows,” AIAA-92-

0439, Jan. 1992.

10. Wilcox, D.C., “Reassessment of the Scale-Determining Equation for advanced Turbulence Models, AIAA

Journal, Vol. 26, No. 11, 1988, pp. 1299-1310.

11. Menter, F.R., and Rumsey, C.L., “Assessment of Two-Equation Turbulence Models for Transonic Flows,”

AIAA-94-2343, June 1994.

12. Degani, D., and Schiff, L.B., “Computation of Supersonic Viscous Flows Around Pointed Bodies at Large

Incidence,” AIAA-83-0034, Jan. 1983.

13. Nichols, R.H., “Algorithm and Turbulence Model Requirements for Simulating Vortical Flows,” AIAA-2008-

0337, Jan. 2008.

14. Suzen, Y.B., and Hoffmann, K.A., “Investigation of Supersonic Jet Exhaust Flow by One- and Two-Equation

Turbulence Models,” AIAA-98-0322, Jan. 1998.

15. Abdol-Hamid, K., Pao, S., Massey, S., and Elmiligui, A., “Temperature Corrected Turbulence Model for High

Temperature Jet Flow,” AIAA-2003-4070, June 2003.

16. Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M.K., and Travin, A., "A New Version of

Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities," Theor. Comput. Fluid Dyn., Vol. 20,

2006, pp. 181-195.

17. Nichols, R., “Comparison of Hybrid RANS/LES Turbulence Models for a Circular Cylinder and a Cavity,”

AIAA Journal, Vol. 44, No. 6, June 2006, pp. 1207-1219.

18. Sickles, W.L., and Steinle, F.W., Jr., “Global Wall Interference Correction and Control for the NTWC

Transonic Test Section,” AIAA-97-0095, Jan. 1997.

